Forum |  HardWare.fr | News | Articles | PC | S'identifier | S'inscrire | Shop Recherche
4342 connectés 

 

Sujet(s) à lire :
 

 Mot :   Pseudo :  
  Aller à la page :
 
 Page :   1  2  3  4  5  ..  140  141  142  ..  581  582  583  584  585  586
Auteur Sujet :

[topic unique] Maths @ HFR

n°3830048
Juju_Zero
Live Fast, Die Young
Posté le 26-09-2004 à 19:29:52  profilanswer
 

Reprise du message précédent :
On est en train de te dire que c'est impossible que tu l'aies jamais fait [:xx_xx]
 
A moins que tu n'aies raté un cours il y a 5 ou 6 ans, et tous les cours qui ont suivi qui reprennent ca .. [:xx_xx]  
 
Sinon, la reponse a ta question precedente, c'etait oui :o


Message édité par Juju_Zero le 26-09-2004 à 19:30:51

---------------
iRacing, LA simu automobile
mood
Publicité
Posté le 26-09-2004 à 19:29:52  profilanswer
 

n°3830058
Herr Dokto​r Kilikil
Pan
Posté le 26-09-2004 à 19:32:15  profilanswer
 

non mais représenter un couple (a,b) dans le plan c'est niveau collège, quand même [:xx_xx]


---------------
Activiste untergründ de l'UCAF, faction radicale
n°3830068
vanilla
datoune's revival
Posté le 26-09-2004 à 19:33:51  profilanswer
 

Juju_Zero a écrit :

C'est impossible que t'aies jamais vu ca, ca se fait en .... 5eme, allez, peut etre meme 6eme [:le kneu]


 
6ème, je me souviens de ma prof ([:huit]) et de mon premier tracé de graphique orthonormé  [:dawa]


---------------
Membre du Front de Libération de Datoune | Soutenez le FLD | A Tribute To Datoune
n°3830076
Juju_Zero
Live Fast, Die Young
Posté le 26-09-2004 à 19:35:02  profilanswer
 

vanilla a écrit :

6ème, je me souviens de ma prof ([:huit]) et de mon premier tracé de graphique orthonormé  [:dawa]


 
Y en a qu'ont de la chance d'avoir des raisons de se souvenir de leurs profs :o :ange:


---------------
iRacing, LA simu automobile
n°3830139
vanilla
datoune's revival
Posté le 26-09-2004 à 19:47:41  profilanswer
 

Juju_Zero a écrit :

Y en a qu'ont de la chance d'avoir des raisons de se souvenir de leurs profs :o :ange:


Elle m'a marqué  :love:  
 
J'étais trop jeune aussi pour ... [:sisicaivrai]


Message édité par vanilla le 26-09-2004 à 19:47:51

---------------
Membre du Front de Libération de Datoune | Soutenez le FLD | A Tribute To Datoune
n°3830156
Herr Dokto​r Kilikil
Pan
Posté le 26-09-2004 à 19:49:47  profilanswer
 

en maths j'ai pas eu de chance, j'ai eu un vieux aigri qui passait son temps à se racler la gorge :/
 
par contre je me souviens de ma prof de français [:huit]


---------------
Activiste untergründ de l'UCAF, faction radicale
n°3830160
Juju_Zero
Live Fast, Die Young
Posté le 26-09-2004 à 19:50:50  profilanswer
 

Ptain, mais vous alliez dans quels lycées/collège les enfants ? :o  
 
Enfin, l'année derniere j'avais bien une colleuse de maths qui etait :love:  
 
Elle notait comme une salope, mais vraiment elle etait :love:


---------------
iRacing, LA simu automobile
n°3830169
Library
Posté le 26-09-2004 à 19:52:45  profilanswer
 

Limit a écrit :

Où trouver des sujets ( et corrigé :D ) de concours Centrale, Mines, CCP de PSI*?
 
J'ai trouve qq sites mais peu complet.


 
les sujets sont sur les sites des concours, mais les corrigés non ;)

n°3830175
Herr Dokto​r Kilikil
Pan
Posté le 26-09-2004 à 19:54:28  profilanswer
 

Juju_Zero a écrit :

Ptain, mais vous alliez dans quels lycées/collège les enfants ? :o  
 
Enfin, l'année derniere j'avais bien une colleuse de maths qui etait :love:  
 
Elle notait comme une salope, mais vraiment elle etait :love:

j'me souviens de ma prof d'allemand au lycée aussi, c'était une remplaçante, 'tin qu'est-ce que je détestais l'allemand, pourtant j'ai passé 6 mois au premier rang :o


---------------
Activiste untergründ de l'UCAF, faction radicale
n°3830182
vanilla
datoune's revival
Posté le 26-09-2004 à 19:55:50  profilanswer
 

Juju_Zero a écrit :

Ptain, mais vous alliez dans quels lycées/collège les enfants ? :o  
 
Enfin, l'année derniere j'avais bien une colleuse de maths qui etait :love:  
 
Elle notait comme une salope, mais vraiment elle etait :love:


 :D


---------------
Membre du Front de Libération de Datoune | Soutenez le FLD | A Tribute To Datoune
mood
Publicité
Posté le 26-09-2004 à 19:55:50  profilanswer
 

n°3830200
Juju_Zero
Live Fast, Die Young
Posté le 26-09-2004 à 19:58:09  profilanswer
 

Herr Doktor Kilikil a écrit :

j'me souviens de ma prof d'allemand au lycée aussi, c'était une remplaçante, 'tin qu'est-ce que je détestais l'allemand, pourtant j'ai passé 6 mois au premier rang :o


 
Et maintenant tu maitrises la langue ? [:zebra33] [:ddr555]


---------------
iRacing, LA simu automobile
n°3830207
Herr Dokto​r Kilikil
Pan
Posté le 26-09-2004 à 19:59:18  profilanswer
 

Juju_Zero a écrit :

Et maintenant tu maitrises la langue ? [:zebra33] [:ddr555]

ça va, oué :o ([:ddr555])


---------------
Activiste untergründ de l'UCAF, faction radicale
n°3831784
TriadPtale
Posté le 26-09-2004 à 22:58:11  profilanswer
 

Pour revenir aux math :p... j'ai un petit ennui avec une limite (honte à moi :()
 
lim(x->+oo)  2x-1- ( (4x²+16x+1)^(1/2))
 
Mon idée était de mettre 4x² en évidence dans la racine afin de le sortir . le reste de la racine est alors 1+4/x+1/4x² qui tend vers 1
 
j'obtient donc 2x-1-2x que je simpliflie et donc je trouve -1 comme réponse....
 
malheureusement, dérive me dit que la limite vaut -5...
 
où est mon erreur ?

n°3831826
Herr Dokto​r Kilikil
Pan
Posté le 26-09-2004 à 23:03:27  profilanswer
 

si tu factorises, tu obtiens 2x (1 - 1/2x - (1+4/x+1/4x²)^1/2), ça te fait une forme indéterminée 0 * +oo
 
à priori ça devrait se régler en faisant un DL de la racine


Message édité par Herr Doktor Kilikil le 26-09-2004 à 23:03:42

---------------
Activiste untergründ de l'UCAF, faction radicale
n°3831910
nicky78
Posté le 26-09-2004 à 23:12:43  profilanswer
 

Et en multipliant par la valeur conjuguée, ça doit marcher  [:columbo2]

n°3831970
TriadPtale
Posté le 26-09-2004 à 23:21:15  profilanswer
 

Merci
 
Si je factorise comme tu le fais, la racine va tendre vers 1, donc on obtient 2x (1 - 1/2x -1) et ça donne -1 non ?
 
J'ai esseyé en multipliant par (2x-1) + ( (4x²+16x+1)^(1/2)) / idem
 
mais alors j'obtient 3...
 
:??:

n°3831979
Herr Dokto​r Kilikil
Pan
Posté le 26-09-2004 à 23:23:08  profilanswer
 

TriadPtale a écrit :

Merci
 
Si je factorise comme tu le fais, la racine va tendre vers 1, donc on obtient 2x (1 - 1/2x -1) et ça donne -1 non ?
 
J'ai esseyé en multipliant par (2x-1) + ( (4x²+16x+1)^(1/2)) / idem
 
mais alors j'obtient 3...
 
:??:

non, 2x (1 - 1/2x -1) ça te fait +oo (qui vient du 2x) que multiplie 0 (qui vient du 1 - 1/2x -1, puique 1/2x tend vers 0), soit une forme indéterminée
 
sinon, multiplier par la quantité conjuquée ça marche aussi, ça donne bien -5


Message édité par Herr Doktor Kilikil le 26-09-2004 à 23:23:19

---------------
Activiste untergründ de l'UCAF, faction radicale
n°3831986
nicky78
Posté le 26-09-2004 à 23:25:05  profilanswer
 

TriadPtale a écrit :


J'ai esseyé en multipliant par (2x-1) + ( (4x²+16x+1)^(1/2)) / idem
 
mais alors j'obtient 3...
 
:??:


 
Si tu multiplies par la valeur conjuguée, tu obtiens "-20x" en haut et "2x-1+(4x²+16x+1)^(1/2)" en bas

n°3831992
TriadPtale
Posté le 26-09-2004 à 23:25:25  profilanswer
 

Oki donc je ne pouvais pas effectuer le truc factoriser pour simplifier brutalement, mais je dois considérer que c'est une indétermination ?
 
Je vais refaire les caculs avec le conjugué...

n°3832009
TriadPtale
Posté le 26-09-2004 à 23:28:24  profilanswer
 

nicky78 a écrit :

Si tu multiplies par la valeur conjuguée, tu obtiens "-20x" en haut et "2x-1+(4x²+16x+1)^(1/2)" en bas


 
C'était tout simple finalement :p
 
J'avais fait une faute de signe c'est pour ça que je tombais pas sur -20x  
 
Merci :)

n°3843028
emlien_
Posté le 28-09-2004 à 21:14:10  profilanswer
 

qui peut m expliciter un peu  
"comparer la position relative de la parabole P et de la droite D" j'ai les équations des 2 courbes, je les ai représenter mais je vois pas quoi faire apres ?
 
merci

n°3844067
Profil sup​primé
Posté le 28-09-2004 à 22:53:55  answer
 

Juju_Zero a écrit :

Enfin, l'année derniere j'avais bien une colleuse de maths qui etait :love:  
 
Elle notait comme une salope, mais vraiment elle etait :love:


 
On fait ce qu'on peut pour éviter qu'il n'y ait trop de brossages de la part des étudiants. ;)

n°3844995
djdie
L'heure, c'est l'heure.
Posté le 29-09-2004 à 00:56:06  profilanswer
 

emlien_ a écrit :

qui peut m expliciter un peu  
"comparer la position relative de la parabole P et de la droite D" j'ai les équations des 2 courbes, je les ai représenter mais je vois pas quoi faire apres ?
 
merci


Ben j'imagine qu'il faut voir si les deux courbes se coupent, si oui en quel(s) point(s), si non quelle est la distance qui les sépare, ce genre de trucs. [edit: voir == par calcul...]


Message édité par djdie le 29-09-2004 à 00:56:57
n°3846348
Profil sup​primé
Posté le 29-09-2004 à 10:42:48  answer
 

emlien_ a écrit :

qui peut m expliciter un peu  
"comparer la position relative de la parabole P et de la droite D" j'ai les équations des 2 courbes, je les ai représenter mais je vois pas quoi faire apres ?
 
merci


Si la droite est y = ax + b, et que la parabole est y = a'x^2 + b' x + c', il faut regarder le signe de a'x^2 + b' x + c' - ax - b en fonction de x.
 
Si cette valeur est > 0, alors la parabole est au dessus de la droite, et en dessous sinon. L'égalité à 0 te donne les points de contact (2, 0 ou 1 suivant si c'est sécant, disjoint ou tangent).
 
Bien sûr, pour le signe de a'x^2 + b' x + c' - ax - b, tu remarques que c'est un trinôme du second degré, et tu dis qu'il est du signe de a' sauf entre ses racines.
 
En résumé :
 
Entre les solutions de l'équation a'x^2 + b' x + c' - ax - b = 0, la parabole est au dessous de la droite si a' > 0, au dessus sinon.
 
En dehors des solutions de a'x^2 + b' x + c' - ax - b = 0, la parabole est au dessus de la droite si a' > 0, au dessous sinon.
 
Au niveau des racines de a'x^2 + b' x + c' - ax - b = 0, la parabole et la droite se touchent. S'il n'y a qu'une solution, la droite est tangente à la parabole. S'il n'y a pas de solution, la droite est toujours dessous, ou bien toujours dessus suivant le signe de a'.
 
Voilà :)

n°3850864
Juju_Zero
Live Fast, Die Young
Posté le 29-09-2004 à 19:31:31  profilanswer
 

Ptain, chuis content, aujourd hui j'ai pu me la peter un peu en salle d'etude [:ddr555]  
 
On parlait un peu fort avec d'autres personnes de ma classe de maths, enfin, on se testait un peu sur notre programme de DS quoi ... En gros on se balancait des phrases a coups de "noyau", "dimension", "codimension", "hyperplan", ... Que des trucs debiles, quoi, le niveau le plus basique de l'algebre lineaire, mais bon, bref ..  
 
C'est tres con, mais les 1eres années nous regardaient comme ca : [:le kneu]  
 
Ca fait du bien de se sentir un peu intelligent [:ddr555]


---------------
iRacing, LA simu automobile
n°3851135
Profil sup​primé
Posté le 29-09-2004 à 19:59:44  answer
 

Juju_Zero a écrit :

Ptain, chuis content, aujourd hui j'ai pu me la peter un peu en salle d'etude [:ddr555]  
 
On parlait un peu fort avec d'autres personnes de ma classe de maths, enfin, on se testait un peu sur notre programme de DS quoi ... En gros on se balancait des phrases a coups de "noyau", "dimension", "codimension", "hyperplan", ... Que des trucs debiles, quoi, le niveau le plus basique de l'algebre lineaire, mais bon, bref ..  
 
C'est tres con, mais les 1eres années nous regardaient comme ca : [:le kneu]


En première année, moi j'avais déjà vu ça :D
 
Ce qui est cool, c'est quand tu suscites ce genre de regard au milieu d'une cafétéria où y'a que des bacs+5 minimum, en parlant de mesures comme des formes linéaires sur des fonctions à support compact :D, ou qu'un bac+30 en analyse numérique te regarde avec des yeux ronds et te demande "quand vous parlez de variété, je peux imaginer un tore, hein ?"


Message édité par Profil supprimé le 29-09-2004 à 20:00:45
n°3851248
Juju_Zero
Live Fast, Die Young
Posté le 29-09-2004 à 20:06:37  profilanswer
 

Ouai mais là c'est moi qui me sent honteux [:xx_xx]


---------------
iRacing, LA simu automobile
n°3851704
masterzwen
Posté le 29-09-2004 à 21:07:45  profilanswer
 

salut a tous j'ai un petit probleme en maths  :sweat:  
 
il faut que je demontre que la fonction sh est une bijection sur R
 
rappel : sh(x) = exp(x)-exp(-x)
                      --------------
                            2
 
je sui parti pour demontre l'injection
 
donc je suppose sh(x) = sh(y)
 donc          exp(x)-exp(-x) = exp(y)-exp(-y)
 
mais apres je peux pas passer au ln parce que x peut etre negatif et je vois pas trop comment faire


Message édité par masterzwen le 29-09-2004 à 21:08:16
n°3851719
Juju_Zero
Live Fast, Die Young
Posté le 29-09-2004 à 21:09:20  profilanswer
 

Tu montres qu'elle est strictement monotone et continue, et roulaize :o


Message édité par Juju_Zero le 29-09-2004 à 21:09:29

---------------
iRacing, LA simu automobile
n°3851738
masterzwen
Posté le 29-09-2004 à 21:12:34  profilanswer
 

Juju_Zero a écrit :

Tu montres qu'elle est strictement monotone et continue, et roulaize :o


 
 
pas con  :D  
 
je suis toujours en train d'essayer de trouver des methodes tordues  :whistle:

n°3851760
Juju_Zero
Live Fast, Die Young
Posté le 29-09-2004 à 21:15:13  profilanswer
 

Pourquoi faire simple quand on peut faire compliqué, mmh ?


---------------
iRacing, LA simu automobile
n°3852489
vanilla
datoune's revival
Posté le 29-09-2004 à 22:47:55  profilanswer
 

masterzwen a écrit :

pas con  :D  
 
je suis toujours en train d'essayer de trouver des methodes tordues  :whistle:


 
Ta méthode est pas tordue, c'est aussi celle que j'ai apprise en cours.
Mais c'est vrai que je ne vois pas comment faire avec cette méthode.  [:zebra33]  
 
Tu pourras poster la correction si jamais ton prof fait la méthode que tu as commencé à faire ?  :??:


---------------
Membre du Front de Libération de Datoune | Soutenez le FLD | A Tribute To Datoune
n°3852542
Selenium
Posté le 29-09-2004 à 22:51:43  profilanswer
 

ah la la ! pas d'injection!! il suffit de chercher une solution et de remarquer qu'elle est unique !!


---------------
http://jkphoto.fr
n°3852584
vanilla
datoune's revival
Posté le 29-09-2004 à 22:56:04  profilanswer
 

lechimistefou a écrit :

ah la la ! pas d'injection!! il suffit de chercher une solution et de remarquer qu'elle est unique !!


mhmh  [:croquignol]  
 
Une application de E dans F est injective si pour tout x, x' appartenant à E on a :
f(x)=f(x') => x=x' :o
 
Genre j'ai f(x)=x²+1 sur R+. Démontrer qu'elle est injective :
 
Soit x1 et x2 appartenant à R+
(x1)²+1=(x2)²+1
(x1)²=(x2)²
 
donc x1 = x2
 
C'est comme ça que j'ai appris  [:mmmfff]


---------------
Membre du Front de Libération de Datoune | Soutenez le FLD | A Tribute To Datoune
n°3852605
Profil sup​primé
Posté le 29-09-2004 à 22:57:51  answer
 

masterzwen a écrit :


mais apres je peux pas passer au ln parce que x peut etre negatif et je vois pas trop comment faire


Tu peux utiliser une méthode plus adaptée (dérivée strictement positive), mais il y a un moyen d'utiliser le log : la fonction est impaire ! Dès lors, il te suffit de montrer qu'elle est injective sur IR+ : tu peux donc considérer x>0 :)

n°3852664
Juju_Zero
Live Fast, Die Young
Posté le 29-09-2004 à 23:02:25  profilanswer
 

vanilla a écrit :

mhmh  [:croquignol]  
 
Une application de E dans F est injective si pour tout x, x' appartenant à E on a :
f(x)=f(x') => x=x' :o
 
Genre j'ai f(x)=x²+1 sur R+. Démontrer qu'elle est injective :
 
Soit x1 et x2 appartenant à R+
(x1)²+1=(x2)²+1
(x1)²=(x2)²
 
donc x1 = x2
 
C'est comme ça que j'ai appris  [:mmmfff]


 
C'est pas parce que bijectif ca veut dire injectif et surjectif qu'il faut le montrer comme ca a chaque fois [:xx_xx]


---------------
iRacing, LA simu automobile
n°3852681
Herr Dokto​r Kilikil
Pan
Posté le 29-09-2004 à 23:03:31  profilanswer
 

Juju_Zero a écrit :

C'est pas parce que bijectif ca veut dire injectif et surjectif qu'il faut le montrer comme ca a chaque fois [:xx_xx]

soit plus diplomate, tu es en train de détruire une partie de ses certitudes mathématiques :o


---------------
Activiste untergründ de l'UCAF, faction radicale
n°3852699
Juju_Zero
Live Fast, Die Young
Posté le 29-09-2004 à 23:04:47  profilanswer
 

[:joce]


---------------
iRacing, LA simu automobile
n°3852749
Selenium
Posté le 29-09-2004 à 23:08:57  profilanswer
 

Herr Doktor Kilikil a écrit :

soit plus diplomate, tu es en train de détruire une partie de ses certitudes mathématiques :o


 
 :lol:  :lol:  :lol:  
 
Bon ben au boulot :  [:lechimistefou]  
 
T'as la méthode, il reste plus qu'à la mettre en forme !
 
Rappele de la definition initiale : une application est bijective si à tout élément de l'ensemble de départ elle fait correspondre un élément et un seul de l'ensemble d'arrivée qui a donc forcément un et un seul antécédent...


---------------
http://jkphoto.fr
n°3852761
Profil sup​primé
Posté le 29-09-2004 à 23:09:48  answer
 

Non, ça c'est nawak. Tu viens juste de donner la définition d'une application. Exemple : si pour tout x dans IR, f(x)=1, f fait bien correspondre à tout élément de IR un et un seul élément de IR, de {-1,1}, de IN, de ce que tu veux.
 
Une application d'une ensemble A vers un ensemble B est une partie de AxB telle qu'à tout x dans A, il existe un unique y dans B tel que (x,y) appartient à l'application. Souvent on note f:A->B et y=f(x), et l'ensemble s'appelle également graphe.
 
Une application est injective si f(x) = f(y) => x = y. Elle est surjective si pour tout y dans B, il existe x dans A tel que y = f(x). Elle est bijective si elle est injective et surjective.


Message édité par Profil supprimé le 29-09-2004 à 23:13:58
n°3852775
Herr Dokto​r Kilikil
Pan
Posté le 29-09-2004 à 23:10:59  profilanswer
 

lechimistefou a écrit :

:lol:  :lol:  :lol:  
 
Bon ben au boulot :  [:lechimistefou]  
 
T'as la méthode, il reste plus qu'à la mettre en forme !
 
Rappele de la definition initiale : une application est bijective si à tout élément de l'ensemble de départ elle fait correspondre un élément et un seul de l'ensemble d'arrivée qui a donc forcément un et un seul antécédent...

euh non, ça c'est la définition d'une application
 
edit : 'tin de connec' qui rame :fou:


Message édité par Herr Doktor Kilikil le 29-09-2004 à 23:11:27

---------------
Activiste untergründ de l'UCAF, faction radicale
mood
Publicité
Posté le   profilanswer
 

 Page :   1  2  3  4  5  ..  140  141  142  ..  581  582  583  584  585  586

Aller à :
Ajouter une réponse
 

Sujets relatifs
Topic about cunnilingus closed....age des blabla-teurs et HFR addict ?
Topic de la dragueLe topic des jeux disparus.
topic physique des ondes[topic unique] Bachelor (la foire aux bestiaux sur M6)
Buffy : Le topic ! Buffy c fini :cry: Angel aussi :cry:Pourquoi un topic à la con devrait etre supprimé ...
Je viens de me souvenir pourquoi je ne venais plus sur HFR...[topic unique] Maths @ HFR
Plus de sujets relatifs à : [topic unique] Maths @ HFR


Copyright © 1997-2025 Groupe LDLC (Signaler un contenu illicite / Données personnelles)