| |||||
| Auteur | Sujet : Fil maths terminale/sup |
|---|---|
Profil supprimé | Posté le 11-06-2010 à 16:44:09 ![]() Reprise du message précédent :
D'où tu sors qu'elles sont définies positives ? Message cité 1 fois Message édité par Profil supprimé le 11-06-2010 à 16:44:48 |
Publicité | Posté le 11-06-2010 à 16:44:09 ![]() ![]() |
Profil supprimé | Posté le 12-06-2010 à 12:17:57 ![]()
edit: en quoi au sens mathématique ou heuristique? Au sens mathématiques on montre qu'on a une probabilité 1 de tirer une telle matrice si on en tire une au hasard. Message cité 2 fois Message édité par Profil supprimé le 12-06-2010 à 12:23:53 |
Profil supprimé | Posté le 12-06-2010 à 12:27:33 ![]() D'ailleurs tout ce que je viens de dire reste vrai pour les matrices diagonalisables avec n valeurs propres distinctes |
bogoss91 |
Message cité 1 fois Message édité par bogoss91 le 12-06-2010 à 13:47:22 |
Profil supprimé | Posté le 12-06-2010 à 13:40:44 ![]()
|
Gato66 | Pas exactement le complémentaire mais peut être penses tu à un ensemble "rare".
Message cité 1 fois Message édité par Gato66 le 12-06-2010 à 13:48:33 |
Publicité | Posté le 12-06-2010 à 13:45:54 ![]() ![]() |
Profil supprimé | Posté le 12-06-2010 à 13:47:38 ![]()
|
Profil supprimé | Posté le 12-06-2010 à 14:01:16 ![]()
|
Profil supprimé | Posté le 14-06-2010 à 17:45:04 ![]()
qqsoit M de R+, il existe x0 tq qqsoit x>x0, f'(x) < (-M)*f(x) Le truc de droite est le terme d'une série géométrique convergente, donc la série du truc de gauche converge. Message cité 1 fois Message édité par Profil supprimé le 14-06-2010 à 17:48:11 |
Profil supprimé | Posté le 14-06-2010 à 18:10:30 ![]()
C'est un thm du cours ça ? Message cité 2 fois Message édité par Profil supprimé le 14-06-2010 à 18:10:41 |
bogoss91 |
|
Profil supprimé | Posté le 14-06-2010 à 18:17:26 ![]()
|
bogoss91 |
|
Profil supprimé | Posté le 14-06-2010 à 18:23:19 ![]()
|
mystiko |
Profil supprimé | Posté le 14-06-2010 à 18:25:59 ![]()
|
Profil supprimé | Posté le 14-06-2010 à 18:27:08 ![]()
|
mystiko |
Message cité 1 fois Message édité par mystiko le 14-06-2010 à 18:32:48 |
bogoss91 |
|
Profil supprimé | Posté le 14-06-2010 à 18:31:38 ![]()
Franchement, j'arrive pas à voir pourquoi... EDIT : Message cité 1 fois Message édité par Profil supprimé le 14-06-2010 à 18:33:46 |
mystiko |
|
System211 | Soit A € Mn(R) telle que pour toute matrice M € Mn(R) det(A+M) = det (M)
|
bogoss91 |
bogoss91 |
|
Profil supprimé | Posté le 24-06-2010 à 14:07:03 ![]()
|
bogoss91 | Pourquoi vous parlez de récurrence là? |
Profil supprimé | Posté le 24-06-2010 à 14:25:06 ![]() |
Publicité | Posté le ![]() ![]() |






