Bon, je quitte le sujet des frangins ce soir, ca part beaucoup trop en troll. Je reponds donc a tes questions:
Citation :
D'après ce que j'ai compris, il existe deux familles de particules : Les fermions et les bosons.
|
oui
Citation :
Les premiers, les fermions, constituent la matière (quarks et leptons), ils ont un spin de 1. Les fermions occupent de l'espace : dans un volume donné, on ne pourra en mettre qu'un certain nombre.
|
On devrait dire plutot fermions --> hadron et lepton. En fait, lepton vient du grec leptos, qui veut dire "leger". Ils ne sont pas sensible a l interaction forte, d ou ce nom. A l inverse, les hadrons, de hadros, en grec, signifie "lourd". Ils sont sensibles a l interaction forte; les quarks en font partie.
Je te parle de hadron car la famille est plus complete avec, les quarks etant une "classe" de hadron.
Edit: fermions, c est bien de spin demi entier.
Citation :
Les seconds, les bosons sont les vecteurs d'interaction des forces. Le photon pour la force électromagnétique, les gluons pour la force electroforte, je ne sais plus quoi pour la force electrofaible et les encore hypothétiques (il me semble) gravitons pour la gravité. Les bosons, ont un spin de 1/2, et n'occupent pas d'espace : on peut en mettre autant qu'on veut dans un volume donné.
|
Edit: boson spin entier (je me fais vieux).
Pour la force electrofaible, tu en as trois: W+ , W- et Z0. Ce sont les particules mises en jeu lors de reactions nucleaires, ou un noyau se desintegre en un autre, par exemple.
Les gluons et les gravitons sont a ranger dans la meme case: nous n avons pas encore de preuve de leur existence, tout comme le boson de Higgs.
Pour les bosons, ca n est pas tant une question de "volume" si tu peux en mettre autant que tu veux: en fait c est purement quantique, vu qu en mécanique quantique, tu traites des particules comme une onde.
Pour definir une particule, tu as besoins de "nombres quantiques", qui les caracterise. Un peu comme des etiquettes que tu leur colles. Le principal atout, c est que des fermions, eux, ne peuvent coexister en ayant les memes nombres quantiques, d ou leurs propriétés.
les bosons, a l inverse, n ont pas se probleme: ils peuvent coexister tout en ayant les memes nombres quantiques, d ou une quantité théoriquement "infinie" dans un volume donné.
Petit nota bene: des fermions peuvent s apparier pour former des bosons, dans certaines conditions tres particulieres. C est ce qui se passe en supraconductivité par exemple, et a la suite de ca, devenant bosons, ils ne sont plus sujet a resistance dans le milieu (car ils peuvent se superposer). D ou la resistance quasi nulle.
Citation :
D'abord, tout ceci est il bien juste ?
|
Avec tous les pitits details, voui.
Citation :
Ensuite, voilà ma question : qu'entend on exactement par vecteur d'interaction et comment cela se passe t'il au niveau des particules ?
|
Ce sont les bosons de jauge, c est a dire les "transporteurs" (= vecteurs) d une interaction. Par exemple, le gluon est le boson de jauge correspondant a l interaction forte, c est son "vecteur d intereaction" entre quark (l interaction forte se faisant entre quarks).
Citation :
Mais comment cela se passe t'il concretemment ? Doit on comprendre cela ainsi (je prends l'exemple des hypothétiques gravitons mais le même raisonnement marche avec les autres bosons pour les autres forces) :
1) Un fermion (de masse non nulle donc) émet en permanence des gravitons dans toutes les directions (donc un fermion créerait en permanence des bosons ).
|
En mécanique quantique, les phenomenes ne sont pas continus, mais discrets. Par cela, il faut comprendre que tu n emets pas "constamment" des particules, ceci pour des considerations energetiques cependant. Une particule n est emise que si les conditions necessaires a sa creation sont vérifiées.
Il faut bien voir que ce sont des "interactions": c est a dire que tu as toujours action --> reaction. Donc, dans ton exemple, le fermion en question emettrait des gravitons, mais il en recoit lui aussi. Il n y a pas "génération spontanée".
C est pour cela que l on parle d interaction: A influe sur B, et B influe sur A en retour. Il y a echange permanent entre les deux.
Sinon, les emissions de gravitons "seraient" (conditionnel!) isotropes (identiques dans toutes les directions). Localement, (au niveau quantique) on ne le sait toujours pas, le graviton n ayant pas encore été caractérisé.
Citation :
2) Quand une autre particule de masse non nulle reçoit un graviton de la première, ça a pour effet de l'attirer dans un sens opposé au vecteur vitesse du graviton et avec une intensité dépendant d'une propriété du graviton en question (fréquence ?).
|
Le graviton n ayant pas encore été étudié car pas caractérisé, on va prendre le photon, ca te sera plus simple. On ne connait pas en effet encore les propriétés du graviton.
A tout vecteur d interaction, tu peux associer un champ. Champ gravitationnel, champ electromagnétique... C est pour ca que tu entends parfois parler de "longueur effective". En fait, c est surtout la longueur caractéristique a laquelle le champ se fait le plus ressentir.
Par exemple, pour la gravité, elle a une tres grande longueur d effet, mais son intensité est ridiculement faible comparée aux autres. L interaction forte est tres tres courte, mais extremement forte, d ou son nom.
Vu que les bosons n ont pas de masse, il est difficile d interpreter les "chocs" entre boson et fermion sous forme classique (entend par la "mécanique Newtonienne" ). Tu es automatiquement obligé de passer a un point de vue plus "relativiste", par exemple comme dans l "effet Compton". C est ce qui te permet de resoudre le probleme du choc, car avec une particule non massive, le probleme est plus que compliqué
Pour ce qui est de la "force", il faut distinguer deux choses:
- l energie intrinseque au boson: pour le photon ce sera sa fréquence. Il va caractériser les interactions boson-fermion.
- l intensité du champ: qui n a rien a voir avec l energie associée au photon, du moins directement. C est du a la "quantité de photons" emise.
Meilleur exemple: une lampe bleue. Tu eclaires doucement, elle eclairera tres mal. Tous les photons ont leur frequence dans le bleu, mais l intensité (la "luminosité" ) est faible. Tu fais passer un fort courant dedans, les photons seront toujours bleus, mais tu seras éblouis: les photons ont gardé la meme frequence, mais l intensité du champ est plus forte, car il y a plus de photons.
Citation :
Par quel moyen le graviton ferait il "bouger" le fermion ?
|
On ne sait pas. Tout le monde n est pas d accord sur le sujet en tout cas. Il est certains que cela agisse par le biais de l interaction. Comment? On ne sait pas.
Surtout qu un autre probleme se pose, c est que dans la relativité, la gravitation n est pas une "force", mais vient de la courbure de l espace temps. Je rentre pas plus dans les details maintenant, on va diverger du sujet initial. Mais tu sais au moins que ca existe. Google pourra t aider a la limite, ou reposte ici, dans un autre sujet.
Citation :
Ca me paraîtrait qd même bizarre parce que ça impliquerait qu'en "barrant la route" a des gravitons on empêche la gravité de se propager plus loin ? A moins qu'un graviton qui interragit avec un fermion ne soit en rien affecté par cette interraction et continue son chemin.
|
Pour cela, il faut pouvoir "barrer la route". Ca implique beaucoup de chose: que le graviton existe, et qu il puisse interagir avec ta barriere.
Car elle peut tres bien faire office de relai. Mettons: soit B ta barriere, un corps A, et un corps B, tous deux massifs.
Tu peux tres bien obtenir ceci: A<-----> C ou A <--> B <--> C . "Bloquer" des gravitons, si tentés qu ils existent, n est pas chose triviale.
Bloquer des photons par contre, implique une interaction avec de la matiere. Donc au lieu d arriver au bout de sa route, notre gentil photon s est juste fait bouffé avant, c est tout
Citation :
Mais si ce n'est pas ça, comment interpréter cette notion de "vecteur d'interaction" pour les bosons et comment les particules communiquent-elles entre elles concrètement ? Comment un électron "sait" qu'il doit aller vers un proton ?
|
Par le biais d echange permanent. C est comme si toi et ton fere avait des talkie-walkies, vous vous deplacer tous deux, en echangeant les messages l un l autre. Vous interagissez donc constamment. toi et ton fere etes deux electrons, les talkies, ce sont les "vecteurs" d interactions.
Citation :
Dernière question, est ce moi qui ai trop fumé ?
|
Non non, t as un post beaucoup moins science fiction que ce que j ai pu lire dernierement.
Dernier point: par vecteur, on entend pas le sens mathématique du terme, mais celui plus comment de "porteur, transporteur". Voila voila.
C est pas trop indigeste?
Edit: gros grilled par bongo, comme d hab quoi.
Bien vu pour les spins, j avais pas fait attention.
Message édité par Gf4x3443 le 21-08-2004 à 00:27:51