Forum |  HardWare.fr | News | Articles | PC | Prix | S'identifier | S'inscrire | Aide | Shop Recherche
1586 connectés 

  FORUM HardWare.fr
  Emploi & Etudes
  Etudes / Orientation

  entretien pour stage et question de maths...

 



 Mot :   Pseudo :  
 
Bas de page
Auteur Sujet :

entretien pour stage et question de maths...

n°140027
fabieni200​0
Posté le 16-11-2003 à 17:19:44  profilanswer
 

Bonjour,
 
Voila j'ai un entretien de stage pour aller bosser sur un trading floor de la city et je connais deja deux questions :
 
Qu'est-ce qu'un develeoppement limite?
Qu'est ce qu'une matrice diagonisable?
 
Bien que je comprenne ces concepts, j'ai enormement de mal a les expliquer, pourriez vous m'aider a formuler une reponse claire a ces questions?
 Ce stage c'est mon reve et je ne souhaiterais pas le rater.Merci

mood
Publicité
Posté le 16-11-2003 à 17:19:44  profilanswer
 

n°140030
botman
Cubeur
Posté le 16-11-2003 à 17:30:04  profilanswer
 

un conseil : si tu sais meme pas ca va falloir reprendre tes revisions de maths serieusement, parce que le but cai pas tellement l'entretien mais d'etre bon dans ton stage et d'avoir les connaissances requises ....


---------------
"OCPLB : On Casse Pas Le Binôme, 'moiselle Jade, Carlson & Peters, page 823 !"
n°140034
FrigoAcide
Posté le 16-11-2003 à 17:34:19  profilanswer
 

En plus faut que tu l'expliques en anglais ?

n°140035
Dion
Acceuil
Posté le 16-11-2003 à 17:43:39  profilanswer
 

BotMan a écrit :

un conseil : si tu sais meme pas ca va falloir reprendre tes revisions de maths serieusement, parce que le but cai pas tellement l'entretien mais d'etre bon dans ton stage et d'avoir les connaissances requises ....


 
la question c'est pas de savoir ce que c'est :heink:

n°140050
ToxicAveng​er
Tatatatakae ! Otaking !!!!!!
Posté le 16-11-2003 à 19:25:13  profilanswer
 

BotMan, être de lumière Omniscient et Omnipotent, va se faire un plaisir de te l'expliquer [:rofl]

n°140055
fabieni200​0
Posté le 16-11-2003 à 19:45:53  profilanswer
 

Je ne cherche pas a savoir ce que c'est Mr Botman, relis mon sujet mais seulement a l'expliquer clairement et brievement car mon entretien se fera au tel depuis New York vers Londres donc je pense pas que je vais pouvoir m'eterniser. je vais peut etre te paraitre un peu directe mais la prochaine fois lis mieux le topic et garde pour toi tes remarques inconstructives qui ne menent a rien.
Par contre si qq1 a un debut d piste a me devoiler , je lui en serai tres reconnaissant.Merci

n°140082
Zipo
Ours bipolaire
Posté le 16-11-2003 à 21:34:22  profilanswer
 

fabieni2000 a écrit :

Bonjour,
 
Voila j'ai un entretien de stage pour aller bosser sur un trading floor de la city et je connais deja deux questions :
 
Qu'est-ce qu'un develeoppement limite?
Qu'est ce qu'une matrice diagonisable?
 
Bien que je comprenne ces concepts, j'ai enormement de mal a les expliquer, pourriez vous m'aider a formuler une reponse claire a ces questions?
 Ce stage c'est mon reve et je ne souhaiterais pas le rater.Merci


 
Très grossièrement, un développement limité sert à rapprocher d'une forme polynomiale des fct commes que cos(x), sin(x), ln(x) etc
 
et une matrice est diagonalisable si on peut mettre toutes ses valeurs propres sur sa diagonale (en gros si la dimension des vecteurs propres associés à chaque valeur propre de la matrice est égale à la multiplicité de la valeur en question)
Si t'as pas assez de vecteurs pour une valeur propre multiple, tu peux trigonaliser / jordaniser ..
 
Voila, cela dit j'ai jamais été bon en maths alors c'est ptet faux :crazy:

n°140154
Profil sup​primé
Posté le 17-11-2003 à 08:47:31  answer
 

Décidément, il aura pas sa réponse...
Ya ptete des balaises en maths mais en anglais/francais/lecture de topic c'est pas brillant..:)

n°140172
Rawhead re​x
Argghhhhh
Posté le 17-11-2003 à 10:40:20  profilanswer
 

Hardline TCJ a écrit :

Décidément, il aura pas sa réponse...
Ya ptete des balaises en maths mais en anglais/francais/lecture de topic c'est pas brillant..:)


Bon je vais essayer.
Pour ce qui concerne la diagonalisation, l'interet est de pouvoir appliquer des methodes numeriques (de calcul par ordi quoi) simplifiees. Exemple : toutes les methodes d'optimisation continue faisant intervenir des systemes d'equations. De plus dans le cas de matrices diagonalisables, des theoremes d'existence de solutions et de stabilite des methodes numeriques existent (on sait ou on va numeriquement quoi). Bref, une matrice diagonalisable a de tres bonne proprietes numeriques.
 
Pour ce qui est du developpement limite, c'est un peu plus complique. En effet, il y a developpement limite et developpement en serie entiere et polynome d'interpolation de degre fixe qui sont des notions proches d'un point de vue approximation numerique (en general c'est a cela que ca sert). Il existe des theoremes qui stipulent que les coefficients d'un polynomes d'interpolations d'une fontion donnee sont seulement les coefficients intervenant dans le développement limité au voisinage du point considéré. Un polynome d'interpolation correspond lui à l'appromation d'une fonction non forcement continue autou du point que l'on considere (cas classique : le nuage de point). Bref dans le cas continue ces 3 notions correspondent à la meme chose.
 
Voila, mais il faudrait un peu plus d'indications sur ce que tu veux vraiment savoir.

n°140179
phosphorus​68
Pseudo à n°
Posté le 17-11-2003 à 11:28:54  profilanswer
 

Une matrice A est diagonalisable s'il existe une matrice de transformation (on va dire T) qui, multipliée à une certaine matrice diagonale (au pif B), est égale à la matrice diagonalisable.
Càd si A= T.B où B est diagonale, c'est OK.
 
Propriété de la matrice diagonale: les v.p. constituent la diagonale.

mood
Publicité
Posté le 17-11-2003 à 11:28:54  profilanswer
 

n°140230
ToxicAveng​er
Tatatatakae ! Otaking !!!!!!
Posté le 17-11-2003 à 14:06:12  profilanswer
 

phosphorus68 a écrit :

Une matrice A est diagonalisable s'il existe une matrice de transformation (on va dire T) qui, multipliée à une certaine matrice diagonale (au pif B), est égale à la matrice diagonalisable.
Càd si A= T.B où B est diagonale, c'est OK.
 
Propriété de la matrice diagonale: les v.p. constituent la diagonale.


 
c pas ca la qst...  :pfff:

n°140247
fabieni200​0
Posté le 17-11-2003 à 15:25:39  profilanswer
 

bah en fait ce qui m'interesse de savoir c'est si on vous posait ces questions au telephone lors d'un entretien (en francais), qq vous repondriez, car il faut etre clair et ne pas trop s'etaler non plus...

n°140278
ToxicAveng​er
Tatatatakae ! Otaking !!!!!!
Posté le 17-11-2003 à 16:56:53  profilanswer
 

et bien la réponse de Rawhead rex me semble parfaite. Tu la simplifies un peu pour la raccourcir, tu la traduis en anglais et tu la notes kk part au cas où :D

n°140287
fabieni200​0
Posté le 17-11-2003 à 17:49:43  profilanswer
 

oui c juste la matrice diagonisable qui me pose probleme et comment expliquer clairement quune matrice est diagonisable ou non

n°140297
Zipo
Ours bipolaire
Posté le 17-11-2003 à 18:21:31  profilanswer
 

fabieni2000 a écrit :

oui c juste la matrice diagonisable qui me pose probleme et comment expliquer clairement quune matrice est diagonisable ou non


Ben si tu lis pas ce qu'on t'écris aussi ...  :heink:

n°140303
fabieni200​0
Posté le 17-11-2003 à 18:29:14  profilanswer
 

si si j'ai lu mais je palerai plus de la methode pour faire la demonstration et non  du fait de se retrouver au final avec ttes les valeurs sur la diagonale principale

n°140321
Zipo
Ours bipolaire
Posté le 17-11-2003 à 19:53:58  profilanswer
 

fabieni2000 a écrit :

si si j'ai lu mais je palerai plus de la methode pour faire la demonstration et non  du fait de se retrouver au final avec ttes les valeurs sur la diagonale principale


Ben tu as ta matrice A, tu calcule le polynome caractéristique de cette matrice dont les solutions s'apellent valeurs propres de A, ensuite pour chaque valeur propre tu résouds un systeme d'eq. pour trouver les vecteurs propres associés à la valeur propre. Et si pour chaque valeur propre, t'obtiens que la dimension de ses vecteurs propres est égale à la multiplicité de celle ci alors A est diagonalisable.
Et dans le second cas (par exemple si tu chopes une valeur propre multiple d'ordre 2 mais que tu peux lui associer qu'un seul vecteur propre, ben elle est pas diagonalisable, faut la réduire sous une autre forme (trigo etc..))
 
excuse moi mais si t'as pas compris cette explication très grossière, n'essaye pas d'expliquer ce qu'est une matrice diagonalisable ...


Message édité par Zipo le 17-11-2003 à 19:55:26
n°140323
printf
Baston !
Posté le 17-11-2003 à 20:01:12  profilanswer
 

:lol:
Le monsieur vous demande comment il pourrait expliquer ces concepts au téléphone, il n'a pas besoin d'un cours de maths je crois :D


---------------
Un matin je me lèverai et il fera beau.
n°140328
Zipo
Ours bipolaire
Posté le 17-11-2003 à 20:10:20  profilanswer
 

printf a écrit :

:lol:
Le monsieur vous demande comment il pourrait expliquer ces concepts au téléphone, il n'a pas besoin d'un cours de maths je crois :D

en même temps comment tu veux qu'il explique ce qu'est la diagonalisation d'une matrice si il ne "résume" pas le cours y faisant référence ...
 
Parce que chez moi  cours = explications du concept..
Et pis bon un cours de 5 lignes on a vu pire ;)


Message édité par Zipo le 17-11-2003 à 20:24:54
n°140444
phosphorus​68
Pseudo à n°
Posté le 18-11-2003 à 10:58:46  profilanswer
 

ToxicAvenger a écrit :


 
c pas ca la qst...  :pfff:  


J'ai répondu à "quand est-ce qu'une matrice est diagonalisable?", OK. Pour revenir à la question de départ, ça me semble pas très long. La réponse de Rawhead me semble parler de l'implémentation sur un ordi, pas de ce que c'est.

n°140463
Profil sup​primé
Posté le 18-11-2003 à 13:07:28  answer
 

Bon,je tente une réponse  
Matrice Diagonalisable: Matrice pour laquelle les dimensions des espaces propres correspondent respectivement aux ordres de multiplicité algébrique des valeurs propres associées.

mood
Publicité
Posté le   profilanswer
 


Aller à :
Ajouter une réponse
  FORUM HardWare.fr
  Emploi & Etudes
  Etudes / Orientation

  entretien pour stage et question de maths...

 

Sujets relatifs
Stage en Cryptographie / Sécurité informatiqueentretien: "presentez vous"
Question salaireStage de pré-embauche en Angleterre (+ vie en Angleterre)
Entretien d embauche, need help !Stage en salle des marches
[Stage] PrimeMonstage.com : pour trouver un stage
Petite question de math niveau CM2.Recherche de stage à L'Etranger
Plus de sujets relatifs à : entretien pour stage et question de maths...


Copyright © 1997-2018 Hardware.fr SARL (Signaler un contenu illicite) / Groupe LDLC / Shop HFR